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Inverse wave scattering problem

Generic setup: A collection (array) of sensors probes a medium

with signals (pulses, chirps) that generate waves which are scat-

tered by inhomogeneities. The sensors collect the scattered

waves and the goal of the inversion is to estimate the medium.

Numerous applications: medical ultrasound, nondestructive eval-

uation of structures, radar imaging, oil exploration, etc.
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Inverse problem for wave equations

• Sound waves: pressure p(t,x) and velocity v(t,x) satisfy

σ(x)

c(x)
∂tv(t,x) +∇p(t,x) = F (t,x)

∂tp(t,x) + σ(x)c(x)∇ · v(t,x) = 0, t > 0, x ∈ R3.

Medium modeled by acoustic impedance σ(x) & wave speed c(x).

• Electromagnetics: electric field E(t,x) satisfies

∇×∇×E(t,x) +
1

c2(x)
∂2
t E(t,x) = F (t,x), t > 0, x ∈ R3,

Medium with constant magnetic permeability, wave speed c(x).

• F (t,x) models the excitation. Homogeneous initial conditions.

Inversion data: p(t,x) or E(t,x) at the receiving sensors.
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Basic (acoustic) model

• Acoustic pressure in medium with constant density[
1

c2(x)
∂2
t −∆

]
p(t,x;xs) = −∇ ·F (t,x), p(t,x;xs) ≡ 0 for t� 0.

• Emitter is a point source: −∇ · F (t,x) = δ(x− xs)f(t)

• In array imaging the signal is a pulse f(t) = e−iωotBϕ(Bt)

display of Real[f(t)]
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It oscillates at central frequency ωo and is supported at t ∼ 1/B,
where B = bandwidth

f̂(ω) =
∫ ∞
−∞

dt f(t)eiωt = ϕ̂

(
ω − ωo
B

)
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Why a pulse?

The length scale relations are important in inversion:

• Central wavelength λo = 2πco
ωo

.

• Distance (range) L between array and imaging scene.

• Linear size a of array aperture (may be synthetic).

• Distance co/B traveled by waves over pulse duration.

In radar and seismic applications: L & a� co/B � λo

 high frequency (small wavelength) regime.

As a rule, the smaller λo and co/B are, the better the imaging.

The ratio a/L also plays a role.
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Chirped signals and pulse compression

• Antennas have limited instantaneous power: |f(t)|2 ≤ Pmax.
For a signal of duration T , the emitted energy is ≤ TPmax.

• The received energy is a fraction of this (partial reflection, ge-
ometrical spreading). This energy should be large to distinguish
from noise  Use more antennas or increase duration T .

Chirped (linear frequency modulated) signal f(t) = e−iωot+iγt2ϕ

(
t
T

)
.

Assuming
√
γT � 1, the Fourier transform is

f̂(ω) ≈
√
iπ

γ
e
−i(ω−ωo)2

2γT ϕ

(
ωo − ω

2γT

)
 B = γT.

Note that T � 1√
γ =

√
T
B  T � 1/B.

Long signal is compressed to get a pulse of duration ∼ 1/B.
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Chirped signals and pulse compression

• Pulse compression realized by convolving the echoes with f(−t)

• Why does this work?

fc(t) = f(t) ? f(−t)

=
∫ ∞
−∞

dω

2π
|f̂(ω)|2e−iωt

≈
1

2γ

∫ ∞
−∞

dω

∣∣∣∣ϕ(ωo − ω2B

)∣∣∣∣2e−iωt
Example: if ϕ(s) = 1[−1/2,1/2](s) we get

fc(t) = Te−iωotsinc(Bt).

We have transformed the signal with duration T � 1/B to a
pulse oscillating at frequency ωo and support t ∼ 1/B.
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Forward (data) model

• The acoustic pressure is a superposition of time harmonic waves

p(t,x;xs) =
∫ ∞
−∞

dω

2π
p̂(ω,x;xs)e

−iωt

satisfying the Helmholtz equation

∆p̂(ω,x;xs) +
ω2

c2(x)
p̂(ω,x;xs) = −f̂(ω)δ(x− xs)

with outgoing (radiation) conditions.

• We have access to p̂(ω,xr;xs) for |ω − ωo| ≤ B, r = 1, . . . , Nr
and s = 1, . . . , Ns.

• Forward model relates unknown c(x) to these measurements.

This is a very complicated mapping!
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What can we invert for?

• Inversion model uses separation of scales:

1

c2(x)
=

1

c2o(x)
[1 + ρ(x) + µ(x)]

co(x) = smooth, determines kinematics of waves (travel times).

ρ(x) = rough part, is the reflectivity that we wish to determine.

µ(x) models small variations at small scale (clutter), that may
have a cumulative scattering effect on the wave.

• What can we estimate?

- Smooth co(x) (velocity analysis): Travel time tomography
(many applied papers, theory of Uhlmann, Stefanov, Vasy). Dif-
ferential semblance optimization (Symes). Here co = constant.

- Reflectivity ρ (imaging problem).

- Clutter cannot be estimated  random model of uncertain µ.
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Born approximation: linear forward model

• For co = constant and neglecting clutter,(
∆ + k2

)
p̂(ω,x;xs) = −f̂(ω)δ(x− xs)−

ω2

c2o
ρ(x)p̂(ω,x;xs).

• Inverting the Helmholtz operator using Green’s function

Ĝ(ω,x,xs) =
eiωτ(x,xs)

4π|x− xs|
, τ(x,xs) =

|x− xs|
co

,

we get

p̂(ω,xr;xs) = f̂(ω)Ĝ(ω,xr,xs)+
ω2

c2o

∫
dy ρ(y)p̂(ω,y;xs)Ĝ(ω,xr,y).

• Born (single scattering) approximation

p̂(ω,y;xs) f̂(ω)Ĝ(ω,y,xs)

is justified for ρ of small support, like a point reflector.
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Data model

• Additive noise, single scattering model

D(t,xr,xs) = p(t,xr;xs) + N(t,xr,xs)

Typically N(t,xr,xs) is Gaussian, uncorrelated over the sensors.

• By time windowing the direct wave from xs to xr,

p(t,xr;xs) 
∫
dω

2π

ω2

c2o
f̂(ω)

∫
dy ρ(y)

eiωτ(y,xs)

4π|y − xs|
eiωτ(y,xr)

4π|y − xr|

= −
1

(4πco)2

∫
dy ρ(y)

f ′′
[
t− τ(y,xs)− τ(y,xr)

]
|y − xs||y − xr|

.

• Depending on support of ρ and size of array, geometrical

spreading factors may be approximated by a constant.
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Numerically simulated data∗
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Scattered wave by point reflector plotted vs. time on abscissa

and receiver location on ordinate. Center sensor emits pulse f(t).
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Multiply scattered echos among point reflectors are ignored.

∗Simulations by Chrysoula Tsogka. 12



Image formation - Reverse time (Kirchhoff) migration

• The imaging function

I(~y) =
Nr∑
r=1

Ns∑
s=1

D
(
τ(y,xs) + τ(y,xr),xr,xs

)
is expected to peak at points ~y in support of the reflectivity.
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• Resolution in direction of propagation (range) is co/B. The
pulse width 1/B determines precision of travel time estimation.

• Resolution in cross-range is ∼ λoL/a.
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Noise vs. clutter effects in migration imaging∗
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Noise is averaged out by summation (over large aperture).

Clutter is harder to deal with.

∗Simulations by Chrysoula Tsogka. 14



Multiple scattering effects in media with strong reflectors∗

∗Simulations by Alexander Mamonov 15


